Tunneling Phase Diagrams in Anisotropic Multi‐Weyl Semimetals

نویسندگان

چکیده

Motivated by the exciting prediction of Multi-Weyl topological semimetals that are stabilized point group symmetries [Phys. Rev. Lett. 108 (2012) 266802], we study tunneling phenomena for a class anisotropic semimetals. We find distant detector different ranges an anisotropy parameter $\lambda$ and incident angle $\theta$ will measure number propagating transmitted modes. present these findings in terms phase diagrams is valid incoming wave with fixed wavenumber $k$--energy not fixed. To gain deeper understanding this phenomenon then focus on simplest case quadratic Weyl-semimetal analyze coefficients analytically numerically to confirm observations from diagram. Our results show non-analytical behavior, which hallmark transition. This serves as motivation make formal analogy transitions known statistical mechanics. Specifically, argue long distance limit our problem takes place thermodynamic More precisely, direct connection recently developed formalism dynamical [Reports Progress Physics 81 (5) (2018) 054001]. propose can help classify transport properties exotic

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: Spin-orbit coupling in magnetic tunnel junctions

The effects of the spin-orbit coupling SOC on the tunneling magnetoresistance of ferromagnet/ semiconductor/normal-metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance TAMR are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interfer...

متن کامل

Orphan-Free Anisotropic Voronoi Diagrams

We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.

متن کامل

Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This struc...

متن کامل

Anisotropic Young Diagrams and Jack Symmetric Functions

Λ:λրΛ(cα(b) + u)(cα(b) + v)κα(λ,Λ)φ(Λ) = (nα + uv) φ(λ), where cα(b) is the α-content of a new box b = Λ \ λ. If α = 1, this identity implies the existence of an interesting family of positive definite central functions on the infinite symmetric group. The approach is based on the interpretation of a Young diagram as a pair of interlacing sequences, so that analytic techniques may be used to so...

متن کامل

Anisotropic Diagrams: Labelle Shewchuk approach revisited

F. Labelle and J. Shewchuk have proposed a discrete definition of anisotropic Voronoi diagrams. These diagrams are parametrized by a metric field. Under mild hypotheses on the metric field, such Voronoi diagrams can be refined so that their dual is a triangulation, with elements shaped according to the specified anisotropic metric field. We propose an alternative view of the construction of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annalen der Physik

سال: 2022

ISSN: ['1521-3889', '0003-3804']

DOI: https://doi.org/10.1002/andp.202200267